Исследования реальной клинической практики

Сбор, анализ и использование данных состояния здоровья и процессов оказания медицинской помощи, полученных из обезличенных электронных медицинских карт (Real World Data, RWD)

Ценность

Эффективные клинические исследования

Улучшение разработки и выведения на рынок новых препаратов, ретроспективные исследования

Автоматизированный анализ RWD

Оценка эффективности лекарственной терапии, поиск клинических и демографических характеристик

Формирование доказательств на основе RWD

Исследования и публикации научных отчетов и статей на основе анализа сформированных наборов данных RWD

Постмаркетинговый мониторинг

Оценка эффективности исследований, подтверждающих клиническую пользу применения лекарственных средств

Функциональные возможности

  • Централизованный сбор обезличенных медицинских данных из электронных медицинских карт (ЭМК)
  • Автоматическое объединение различных эпизодов в единый цифровой профиль пациента
  • Автоматическое извлечение признаков из неструктурированных медицинских записей
  • Выявление ошибок в данных, обнаружение и исключение дублей
  • Формирование структурированных наборов данных под требования заказчика
  • Анализ собранных наборов данных реальной клинической практики (RWD)

 

Как это работает

  • Подключаем к Webiomed поставщиков медицинских данных, подписывая соответсвующие соглашения на право сбора и обработке обезличенных данных
  • Обеспечиваем полное соблюдение требований законодательства по охране данных и их надежную защиту
  • Формируем различные RWD-наборы и производим на их основе анализ
  • На основании полученных наборов и результатов аналитической обработки мы помогаем нашим заказчикам проводить RWD/RWE-исследования, в т.ч. привлекая при необходимости профессиональные контрактно-исследовательские организации (КИО)

Для чего это нужно

  • Оценка распространенности заболеваний, факторов риска и клинических характеристик пациентов
  • Оценка влияния лекарственных средств на целевое заболевание/исход и описание схем терапии
  • Выявление подозрений на заболевания и интеллектуальный анализ клинических данных
  • Разработка и валидация различных алгоритмов, цифровых продуктов и моделей машинного обучения на данных реальной клинической практики
  • Проведение иных научных исследований и разработок в сфере анализа электронных медицинских карт (ЭМК)

 

Наши публикации по теме RWD

3 212

Результаты ретроспективного анализа частоты ишемического инсульта и назначения антикоагулянтной терапии пациентам с фибрилляцией предсердий в зависимости от индекса массы тела

Дружилов М.А., Кузнецова Т.Ю., Дружилова О.Ю., Царькова М.К., Гаврилов Д.В., Гусев А.В.

Подробнее
4 070

Профилактика фебрильной нейтропении у онкологических пациентов: данные реальной клинической практики

Сапожников К.В., Сорокина И.В., Гусев А.В., Саблева Н.А., Соколова В.Д., Толкачева Д.Г., Березина А.М.

Подробнее
3 319

Фибрилляция предсердий и хроническая болезнь почек: основные клинические характеристики пациентов в отдельных субъектах Российской Федерации

Дружилов М.А., Кузнецова Т.Ю., Дружилова О.Ю., Арустамова У.Д., Гаврилов Д.В., Гусев А.В.

Подробнее
3 745

Извлечение данных из электронных медицинских карт с помощью NLP алгоритмов

Аleksandr V. Gusev, Roman E. Novitskiy, Aleksandr A. Ivshin, Juliia S. Boldina, Аleksey S. Shtykov, Аleksey S. Vasilev

Подробнее
3 902

Электронные медицинские карты как источник данных реальной клинической практики

Гусев А. В., Зингерман Б. В., Тюфилин Д. С., Зинченко В. В.

Подробнее
3 558

Верификация субклинического каротидного атеросклероза в рамках риск-стратификации при избыточном весе и ожирении: роль методов машинного обучения в формировании диагностического алгоритма

Дружилов М. А., Кузнецова Т. Ю., Гаврилов Д. В., Гусев А. В.

Подробнее
9 091

Применение автоматизированной системы поддержки принятия врачебных решений при диспансеризации взрослого населения для контроля правильности оценки уровня сердечно-сосудистого риска

Гусев А.В., Токарев С.А., Гаврилов Д.В., Кузнецова Т.Ю.

Подробнее
6 015

Машинное обучение на лабораторных данных для прогнозирования заболеваний

Гусев А.В., Новицкий Р.Э., Ившин А.А., Алексеев А.А.

Подробнее
10 911

Распространенность хронической болезни почек по данным ретроспективного когортного исследования «Эпидемиология ХБП» (город Киров)

Батюшин М.М. Касимова И.С. Гаврилов Д.В. Гусев А.В. Гуламов А.А.

Подробнее
6 519

Результаты ретроспективного анализа записей электронных амбулаторных медицинских карт пациентов с хронической сердечной недостаточностью: первый российский опыт

 С. Р. Гиляревский,   Д. В. Гаврилов,   А. В. Гусев

Подробнее
7 201

Алгоритм формирования подозрения на новую коронавирусную инфекцию на основе анализа симптомов для использования в системах поддержки принятия врачебных решений

Д. В. Гаврилов,А. В. Кирилкина, Л. М. Серова

Подробнее
6 425

Предсказание сердечно-сосудистых событий при помощи комплексной оценки факторов риска с использованием методов машинного обучения

Гаврилов Д.В., Серова Л.М.,  Корсаков И.Н., Гусев А.В., Новицкий Р.Э. , Кузнецова Т.Ю.

Подробнее
Все публикации

Платформа Webiomed обработала данные

Пациентов

0

Случаев лечения

0

Медицинских документов

0

Извлеченные признаки

0

ПАТЕНТЫ И СЕРТИФИКАТЫ

Регистрационное удостоверение Росздравнадзора на медицинское изделие №РЗН 2020/9958 от 03.04.2020

Cертификация на соответствие Системы Менеджмента Качества (СМК) стандарту ISO 13485:2016 «Изделия медицинские. Системы менеджмента качества. Требования для целей регулирования».

Регистрация в качестве «Иной информационной системы» по постановлению правительства №447

Присоединяйтесь

Наши группы в соц сетях

Новости о продукте

Выпущена новая версия сервиса извлечения признаков из медицинских текстов Webiomed.NLP 2.0

11 Июл 2024  |   1 271

Искусственный интеллект помогает прогнозировать риск преэклампсии

17 Ноя 2023  |   1 543

Webiomed- победитель «Лаборатории инноваций MedLAB»

29 Апр 2022  |   2 998

Проект Webiomed был представлен фармацевтической отрасли

01 Мар 2022  |   1 828

Искусственный интеллект для верификации атеросклероза брахиоцефальных артерий

18 Янв 2022  |   3 297

Искусственный интеллект будет помогать выявлять заболевания почек на ранней стадии

17 Янв 2022  |   2 248

Подписаны пять соглашений о сотрудничестве с регионами РФ на внедрение Webiomed

23 Дек 2021  |   1 881

В Webiomed добавлены функции для борьбы с сахарным диабетом

27 Сен 2021  |   2 612

Мы приняли участие в конференции по RWD/RWE в России

20 Сен 2021  |   1 975

Выявление редких (генетических) заболеваний с помощью искусственного интеллекта

10 Июн 2021  |   2 705

Дополнительная информация

Фибрилляция предсердий и хроническая болезнь почек: основные клинические характеристики пациентов в отдельных субъектах Российской Федерации

Просмотров 3 319 2 года, 5 месяцев назад

Применение автоматизированной системы поддержки принятия врачебных решений при диспансеризации взрослого населения для контроля правильности оценки уровня сердечно-сосудистого риска

Просмотров 9 091 3 года, 7 месяцев назад

Машинное обучение на лабораторных данных для прогнозирования заболеваний

Просмотров 6 015 3 года, 10 месяцев назад

Распространенность хронической болезни почек по данным ретроспективного когортного исследования «Эпидемиология ХБП» (город Киров)

Просмотров 10 911 4 года, 3 месяца назад